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Stochastic Risk Premiums, Stochastic Skewness
in Currency Options, and Stochastic Discount Factors

in International Economies

ABSTRACT

In this paper, we develop dynamic models of stochastic disciactors in international economies
that are capable of producing stochastic risk premiums taathastic skewness in currency options.
The source of stochastic risk premiums and stochastic sk&swean be stochastic volatility in the
uncertainty of the economy or stochastic market price ofutheertainty, or both. We estimate
these models using both time-series returns and optioespuda three currency pairs that form a
triangular relation: dollar-yen, dollar-pound, and potyah. The estimation reveals several results
about the structure of risk premiums in the internationaheeny. First, the average risk premium
in Japan is significantly larger than the risk premium in th8.Wr the UK. Second, the risk pre-
mium on the global risk factor is both more persistent andenaiatile than the risk premiums
on country-specific risks. Third, investors respond to gbalifferently depending on whether the
origins of the shocks are global or country-specific. Thi premium increases when the global
(domestic) risk factor receives a positive (negative) kheaggesting that investors demand a risk
premium when their wealth declines relative to the globatfptio. Finally, the uncertainty in
each economy contains a jump component that arrives antenfinmber of times within any finite
interval, but only downside jumps appear to be priced.

JEL CLASSIFICATION CoODES. G12, G13, F31, C52.

KeYy WORDS. Stochastic discount factors; international economy; stochastic riskipme stochastic
skewness; currency options; foreign exchange rate dynamics; tiareget levy processes; unscented
Kalman filter.



Theoretical models of foreign exchange dynamics have positive antatioe implications. Posi-
tively, the models assist us in understanding the possible departureghetwahange rates and funda-
mentals. See, for example, Dumas (1992), Mark (1995), Evans am[(2602), and Engel and West
(2004) for recent contributions. Starting with Lucas (1982), exchaates constitute crucial build-
ing blocks for testable multi-period equilibrium models of the international eogn®lore generally,
the endogenously derived models help us appreciate the links betweenci®fpforward-looking
currency derivatives and the distributional properties of the exehaate (Garman and Kohlhagen
(1983), Dumas, Jennergren, and Naslund (1995), Bates (1986Bakshi and Chen (1997)). On the
normative side, exchange rate models can be used to advocate mondtésgalpolicy rules and for
prescribing central bank interventions.

In this paper, we develop dynamic models of stochastic discount factoremational economies
that are consistent with three distinct, yet interrelated, phenomena etsersurrency markets. First,
the risk-reversal quotes, as measured by the difference in the Bld&dmles (1973) implied volatil-
ities between out-of-money call and put currency options, show sulmtéime-variation and often
switch signs. This options market feature is symptomatic of stochastic skewnése conditional
currency return distribution. Second, the butterfly spread quotesededis the average out-of-money
call and put implied volatilities minus the at-the-money counterpart, are uniforadifiye across dif-
ferent option maturities and different underlying currencies, indicatitgdiled risk-neutral currency
return distributions. Third, extant empirical studies have documentedgbrome-varying currency
risk premiums (Fama (1984), Bekaert and Hodrick (1992), Dumas amik§@995), Engel (1996),
and Backus, Foresi, and Telmer (2001)).

What are the sources of stochastic risk premiums in international econokiviea?minimal the-
oretical structures are needed to internalize the evidence from cynretoens and currency options?
How do the different types of risks (say, global versus countrgifipe vary over time and how are
they priced differently? How are the risk premium dynamics related to obdestochastic skewness
and kurtosis in the conditional currency return distribution? The thruthisfresearch is to answer
these questions from both theoretical and empirical perspectives.

In any economy precluding arbitrage, there always exists a stochastoudidactor that links fu-
ture payoffs to their intrinsic values (Harrison and Kreps (1979)). doraplete market, this stochastic
discount factor is unique, and the ratio of the stochastic discount faatthe two economies deter-
mines the exchange rate between them. In the setting of Lucas (1982)jstmce, the equilibrium
home-currency price of a foreign currency is the ratio of the foreimmtry marginal utility to the
home-country counterpart. Therefore, exchange rates offer & dinéltered window to the stochastic



discount factors and the relative risk-taking behaviors of investorgémriational economies. In this
paper, we propose to identify the dynamics of stochastic discount faotarernational economies
using the time-series of currency returns and option prices. Specifiaallyy three currency pairs
that form a triangular relation, i.e., the dollar-yen, dollar-pound, andpgmd, we study the dynamic
behaviors of the stochastic discount factors and stochastic risk premiuhestimree economies of the
U.S., Japan, and the UK.

We propose a class of models of stochastic discount factors that aienpaious in terms of
identification and yet flexible to accommodate both stochastic risk premiums atdstic skewness
in the currency return distribution, which we theoretically show are initgréinked. Our model
specifications allow the stochastic risk premiums on global and countryfisgiesks to be controlled
by separate dynamic processes. Through this parameterization, wepaitally study how the risk
premiums of an economy react differently to shocks on different typasksf.

If economies are strictly symmetric, the global risk component cancels in thatiogof the two
stochastic discount factors. This feature renders the global risk aoengmof the stochastic discount
factors unidentifiable from the data on exchange rates. Neverthel@sestimation shows that the
three economies under investigation are asymmetric. In particular, thegavésk premium in Japan
is about 50 percent higher than the average risk premium in the U.S. okthe U

Given the asymmetry between the three economies, we can identify the niskuprelynamics on
both the global risk component and the country-specific componentsesitmeation shows that the
risk premium dynamics on the two types of risks are quite different. The riskipm on the global
risk factor is both more persistent and more volatile than the risk premium omtimrg-specific risk
factors. This empirical evidence implies that the dynamics of the stochastmudisfactors share a
large global risk component, suggesting a high degree of integration ametigree economies.

The estimation results also reveal that investors respond to global shodksountry-specific
shocks in markedly different ways. Investors increase their risk pramihen the country-specific
risks receive a negative shock; in contrast, the risk premium declines tie global risk component
receives a negative shock. Such a dichotomy between reactions tbagtdlountry-specific risks sug-
gest that the risk preference of investors in an economy varies witeltdite/e wealth of the economy,
with the global portfolio as the benchmark. Investors demand a higherngsikipm when their wealth
declines relative to the global portfolio. A negative shock to the countegific risk components and
a positive shock to the global risk factor both generate a negative impabeaelative wealth of the
economy and is hence associated with a rise in risk premiums.



Finally, the estimation identifies a jump component in each economy that amiesrate number
of times within any finite time intervals. This finding contradicts with traditional conmgoBoisson
jump specifications (Merton (1976)), but strengthens the findings feaent empirical works on equity
index options (Carr, Geman, Madan, and Yor (2002), Carr and Wo32&Huang and Wu (2004), and
Wu (2004)). In fact, our multi-economy estimation identifies a significant deavd jump component
but not an upward jump component in the stochastic discount factorgestiigg that although the
economy can receive both negative and positive shocks, inveseonir concerned with downside
jumps as a potential source of risk. Upside jumps are not priced.

Traditional literature often studies the behavior of risk premiums througbustypes of expec-
tation hypothesis regressions. Under the null hypothesis of zero stastrrisk premium, the slope
coefficients of these regressions should be one. Hence, the pointtestiomthe regression slopes
reveal whether the risk premium is constant or time-varying. More recartgarchers have recog-
nized the rich information content of option markets and started to infer thgpreskium behavior
from a joint analysis of options and the underlying assets. The focussostiland of literature is on
equity index and equity index options in a single economy, mainly the United Stétethis setting,
the estimated stochastic discount factors are typically one-dimensionatfpyogeon the single equity
index. The pricing of risks that are orthogonal to the equity index is langéged by this projection.
Furthermore, it is difficult to use a one-dimensional projection to study the wlinfiétnsional nature
of the stochastic discount factors in international economies. We conttibtlte literature by propos-
ing to infer the multi-dimensional dynamic behaviors of stochastic discoutdriam international
economies using currency returns and currency options.

The paper is organized as follows. Section | outlines the connection besteehastic discount
factor dynamics and nominal exchange rates. Section Il proposessacflasodels for stochastic
discount factors that includes both a global risk factor and countgisprisk factors. Our framework
allows the risk premiums on the two types of risks to follow separate dynamicsinviiis general
setup, we analyze what type of minimal structures are necessary toedptustylized evidence in
currency returns and currency options. We then derive tractabiesféor option pricing and for the
characteristic function of the currency returns. Section |1l desctitiesurrency and currency options
data set for dollar-yen, dollar-pound, and pound-yen exchartgge. r&ection 1V presents an estimation

IProminent examples include Jackwerth and Rubinstein (1996), Pag)(Zngle and Rosenberg (2002), Bakshi, Ka-
padia, and Madan (2003), Bakshi and Kapadia (2003), Broadiernok, and Johannes (2004), Eraker (2004), and Bliss
and Panigirtzoglou (2004). Recently, Driessen and Maenhout (20@25tigate the nature of jump and volatility risks using
equity index options from three countries.



approach based on the joint time-series of currency returns andhcuroption prices. Section V
discusses the estimation results and Section VI concludes.

|. Stochastic Discount Factor Dynamics and Nominal Exchange Rates

Let us describe a set bfeconomies by fixing a filtered complete probability spf@e7 , 7, (t) o<t }»
with some fixed horizorr . We assume no arbitrage in each economy. Therefore, for eachregono
we can identify at least one strictly positive procesg} (h=1,...,N), which we call the state-price
deflator, such that the deflated gains process associated with any atiiisgling strategy is a mar-
tingale (Duffie (1992)). We further assume thay" itself is a semimartingale. The ratio of," at two
time horizons will henceforth be referred as the stochastic discount.facto

We useX" to summarize the aggregate uncertainty in econtnand represent the state-price
deflator via the following multiplicative decomposition:

MM = exp<—/otr2ds>£<—/ot\/§dxsh>, h=1,2,....N, 1)

wherer! denotes the instantaneous interest rate in ecortgn@y denotes the market price of risk in
economyh, and£ (-) denotes th®oléans-Dadexponential operator (Jacod and Shiryaev (1987)). The
second component defined by the Barhs-Dade exponential can be interpreted as the Radon3pikod
derivative that takes us from the statistical meagute the economy risk-neutral measure ":

tzz<—/0tygo|><sh>. )

In equation (1), both; andy; can be stochastic. We can think %Ff as the return shocks to the

daoh
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aggregate wealth in the economy. The sho¥Rscan be multi-dimensional, in which cagdX
denotes an inner product. In representative agent economies, thastoaiscount factor can be
interpreted as the ratio of the marginal utilities of consumption over two time harizon

In complete markets, the state-price deflator for each economy is unigubkearatio of the state-
price deflators between two economies determines the exchange raterbétere(Lucas (1982),



Dumas (1992), Bakshi and Chen (1997), Basak and Gallmeyer (1&9®Backus, Foresi, and Telmer
(2001)). LetS'f denote the currencliprice of currencyf, with h being the home economy, we have

shtf—j{[—ft;, hf=12..N. (3)
Equation (3) defines the formal link between the stochastic discount $dotany two economies and
the exchange rate between them. This link tells us that the time-series ofayuredurns and currency
option prices contain important information about the dynamics of aggregagzrtainties affecting
the two economies and how the underlying risks are priced. In this paggeath of following the
extant literature in using equity index options in a single country to study thd-siane behavior of
the stochastic discount factor in that economy, we exploit the link in (3) aadturrency returns and
currency options to study the joint dynamics of stochastic discount factorgernational economies.

1. Model with Stochastic Risk Premium and Stochastic Skewness

In this section, we propose a class of models for the stochastic discatonsféhat are flexible enough
to generate stochastic risk premiums and stochastic skewness in cuetmogr Formally, we have,

1 1
= exp(—rht) exp(—anp - Enp) exp(— (thh +JRP) - (é kg [-1]) /\P) . @

which decomposes the state-price deflator into three orthogonal componiEme first component
captures the contribution from interest rates. Since a dominant propoftexthange rate movements
is independent of interest rate movements, we assume deterministic intes$oraimplicity and use
r" to denote the continuously compounded spot interest rate of the relevamityna

The second componentincorporates a global diffusion risk 1‘$i‘¢z;ftg>,rwhere\/vg denotes a standard
Brownian motion and} = fé yldsdefines a stochastic time change, capturing stochastic risk premium
on this global risk factor. We labgf as the risk premium rate (per unit time) and use the superscript
h ony; to indicate that the risk premium on the global risk factor can exert a diffie’dempact across
different economies% MNP is the convexity adjustment that makes this second component an exponential
martingale.

The third component describes a country-specific jump-diffusion risﬂofiwh + Jh), wherew"
denotes another standard Brownian motion independent of the globabrisonenw?, andJ" de-
notes a pure jump évy component/A{ = fé Vids defines another stochastic time change, capturing



stochastic risk premium on the country-specific risk component, Witheing the risk premium rate
on the country-specific risk factor.

In the specification of the stochastic discount factor in K4)s| denotes the generalized cumulant
exponent of the vy jump componeni”, defined by

1
kyn U] ZInE (eﬂh) , uenCc (5)

which, as a property ofé&vy processes, does not depend on the the time horizon. A cumulamisg®po
is normally defined on the positive real line, but it is convenient to extendéfirition to the complex
plane,u € » C ¢, where the exponent is well-defined. Aga(é,+ Kjn [—1]) /\th denotes the convexity
adjustment term O(W/r\‘p ~|—JRP) to make the last term an exponential martingale.

In principle, we can also allow a jump component in the global risk factoexperimental estima-
tion shows that the jump in the global risk factor is not significant. Hence heese a pure diffusion
specification for the global factor to maintain parsimony.

In equation (4), we decompose the risk in each economy into a global riggawent and a country-
specific risk component. Through stochastic time changes (Carr and W4k}, we allow the risk
premiums on the two components to be governed by separate dynamicstifbugh model estima-
tion, we can investigate how investors respond to different types ofiriskernational economies. We
can also study the degree of international integration by estimating the rededpertion of variation
in the stochastic discount factor that is driven by the global risk componen

A. Specification of Jumps and Risk Premium Rate Dynamics

Within the general specification in (4), we consider two classes of pareragiens, under which the
models can be fully identified using currency returns and options.

A.1. Proportional Asymmetry

A parsimonious way to capture asymmetry across economies is to use a \festatimmg coefficients
& = [Eh] r'\]':l to model the average difference in risk premium in different economieymAgetries
arise when the economies have different risk magnitudes and/or whestarsvdnave different risk
preferences. For identification, we normalize the scaling coefficienthfoffirst economy to unity:



&l = 1. Then, the deviations of the scaling coefficients from unity for othenewres capture their
average differences in risk premium from the first economy.

With these scaling coefficients, we assume that the jump compdhémteach economy is i.i.d.
with the same Evy density specification as in (6). We model traviy densitw"[x] of this i.i.d. jump
component using an exponentially dampened power law:

Ae Bxy-o-1 x>0
:{ h=1,2---,N, (6)

AeP-X|x=91 x<0

with a € (—1,2) andA,B,,B- > 0. We adopt this specification from Carr, Geman, Madan, and Yor
(2002) as Wu (2004) shows that the dampened power law jump specificaiiomatch evidence in
stocks and currencies. The cumulant exponents whgrd anda # 1 are,

ko[l =T [=a] A ((Bs — )" = (B+)* + (B +u)" — (B-)") +uC[3]. (7)

wherel” [—a] denotes the incomplete Gamma function &jd| is an immaterial drift term that depends
on the exact form of the truncation function used in the computation of thelanmiVe can henceforth
safely ignore this term in our analysis and drop this term in our represemafitie levy density has
singularities att = 0 anda = 1, in which cases the cumulant exponent takes on different forms:

kJ [U]
kJ [U]

—AIn(1—u/Bs)—=AIn(1+u/B-) when o =0,

AB+—uwin(1—u/Bs)+APB-+u)in(1+u/B-) when a=1 ®)

With the i.i.d. assumption on the jump component, we accommodate the averagendifeén
the risk premium rates across different economies by applying the cosstimg coefficients to an
otherwise independent and identical risk premium rate dynamics:

oA} /ot = ENV, (9)

wherev; has the the same (but independent) specification across all ecorfomiés2,--- N. We
model this independent and identical dynamic process using the squdngrocess of Cox, Ingersoll,
and Ross (1985),

dv = Ky (ev - v{") dt -+ wy /P W, (10)



wherep, = E(dW'"dW") /dt captures the correlation between shocks of the country-specificidiffus
risk and its risk premium rate. We can also rewrite the time chang¥'as &"A to stress that the
country-specific risk premium rates across different countries diffaragnitude by a constant scalar.

For the global risk factor, we apply the same set of scaling coefficientgtobal risk premium
rate factor,
onf/ot =&z, nh=zn. (11)

We assume that the global risk premium rate fagoglso follows a square-root process,

dz =Kz (0, —z)dt+ 0, /z dW?, (12)

with p, = E(dW*dW9) /dt.

We identify this model using the time-series of currency returns and optioesoon three currency
pairs: the dollar-yen, the dollar-pound, and the yen-pound. We nomntli scaling on the U.S.
economygVS = 1. The model has 14 parameters for the three economies:

e = [EJPYa EGBpa KZ7 eZa (*)27 pZa KV7 eV7 (*)\/7 pVa )\7 B+7 B— ) a] .

Within each model, we consider three special cases for the jump specifieation fixed at—1, 0,
and 1, respectively. The three differari generate finite activity, infinite activity with finite variation,
and infinite variation jumps, respectively.

A.2. Strict Symmetry Across Economies

Under strict symmetry, the same parameterization for the state-price deflatimsato all economies.
Reality aside, this assumption not only simplifies notation and reduces the nofmfsee parame-
ters, but it also highlights the issue of state-price deflator identification @sicigange rates. A key
implication of strict symmetry is that the contribution of the global risk factor in the ésonomies
cancels. Thus, from currency returns and currency options, wewly identify the country-specific
risk component, but not the global risk component.

Symmetry can be regarded as a degenerating case of the generatipngb@symmetry case
with E" =1 for all h. In this setting, the global risk factor dynamigs;, 8,, w,, p,) can no longer be
identified. Therefore, we can only identify the country-specific parhofiel (4), which is controlled
by eight parameter® = [y, By, Wy, pv, A, B+, B—, a].



B. Currency Return Dynamics

Under the above parameterization, the log return on the exchan@fr&tdn §f/§3f over the horizon
[0,t] is,

g = InZtf InZ‘ (rh—rf>t+<\/i»h—\/E_f)anHr%l'lt(Eh—Ef) (13)
0

0

( a+ I+ <%+k3 [—1]> Eh/\t> — (V\/;f,\t +3ip + <%+k3 [—1]> Ef/\t> .

Equation (13) shows that when economies admit strictly symmétry-€ "), the impact of the global
risk factorw9 vanishes. The identification of the global risk factor hinges on asymmetry.

Conditional on a fixed unit level of time-change = N; = 1, the currency risk premium is:

<§ /% ’/\t nt—l) (r"—rf)
= (e ) rearom o), 14)

where the first term captures the contribution from the global risk factditlae second term captures
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the contribution from the country-specific risk factors. Simfein equation (14) is a constant, we
introduce stochastic currency risk premium via the stochastic time changesi;.

In the absence of the stochastic time changes and hence stochastic msknpse the currency
return is governed by three Brownian motions with constant volatilities and fwp gomponents with
constant arrival rates. The two jump components can generate distradutimm-normality (skewness
and kurtosis) for the currency return. Specifically, fixitg= Ny = 1 and taking successive partial

derivatives of the cumulant exponent= kanlﬂn}

o we can show that the varianog) and the third
u=

(c3) and fourth cumulantscg) for the currency return are given by,
e = (E"+&)AT[2—a] ((B:)"*+(B-)"") +Va,
s = (E"—&N)Ar—a]((B:)*°-(B-)"7). (15)
cs = (E"+EN)AT[4—a] ()" +(B)"),

Q

whereVy capture the variance contribution from the diffusion components,

Vo=2(8"+8") ~2y/en. (16)



The diffusion components have zero contribution to higher-order cutsul@hus, the currency return
shows nonzero skewness or non-zero third cumwanthen (1) the jump component in the log state-
price deflator is asymmetricB, # B_, and (2) the two economies are asymmetric in the average
magnitudes of risk premiumg" £ &7, In fact, these conditions are necessary for the existence of non-
zero odd-order cumulants beyond three. In contrast, the fourth cutf{alquor the excess kurtosis for
the currency return is strictly positive as long as the jump component in theédteyice deflator is

not degenerating\(£ 0). Positive fourth cumulant implies that the tails of the distribution are fatter
compared to the normal distribution. Nevertheless, since all the cumulang) iarélconstant, a model
with constant risk premiums (i.ef\; = Iy = 1) cannot capture the evidence from currency option
markets that the currency return skewness is stochastic (Carr andOBA&(2. Stochastic skewness in
currency return distribution warrants stochastic risk premium.

When the risk premium rates are allowed to be stochastic as in currencynibygn@ 3), currency
return skewness can also arise from three additional sources: r¢&)atimn @,) betweerW® andz,
(2) correlation p) betweerW" andV, and (3) correlationg) betweeryy" andy;. Allowing the
three risk premium rate(&t,v{‘,vtf) to be stochastic produces stochastic skewness in currency returns.

To derive the risk-neutral return dynamics, we note that the measungeteom the statistical
measurer to the home-country risk-neutral” is defined by the exponential martingale:

1
=exp( W 380 oo~ (W ) - (1) €8) . a)

The martingale condition requires that under home-economy risk-neuteasiures ",

& = e (VB -3 (B vE)
(vahA +35% — <§ + k¢ [1]) ah/\t> + <—w;fAt —Jip — (% +kg [—1]) af/\J> (18)

SinceJ’ is independent od", it remains unchanged under". The home-economy jump component

dqQh

de

changes frond", to Jhﬁ underQ ", where the vy density fon]thQ becomes
AN
t

(19)

)\e_(B++1)XX—EX—l x>0
VAN X = eV [x] = L e
Ae B |yt x<o0

Hence,v"[x] andVv"[x] share the same parametric form wRff = B, +1 andp® =pB_ —1. For
BL > 0, we needd_ > 1.
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Under measure ", the country-specific and global risk premium rates processes change

v (KVGV—K\‘}V{])dt—i-OO\, idweh
dz = (KB,—KZz)dt+wy,\/zdW,

with K¢ = Ky + /ENaypy andky = K, + 1/ENw,p,. The process fo:/tf does not change under measure
Q" sinceW"f is independent ofv9 andw".

In light of our analysis, it is natural to ask: What minimal structures aressary to reproduce
observed behaviors in currency returns and options? To gain soneeubdgrstanding and economic
intuition on risk and pricing in international economies, consider a prototymgkehwehere risk in each
economy is governed by a Brownian motion with constant volatility and constarket price of risk:

" = exp(—rht) exp<—\/‘0h\/\4h—;(yh0h)2t>, h=12... N, (20)

whereW denotes a standard Brownian motion andndy are constant scalars. Instead of separately
specifying a global risk component, we allow constant correlation bettfeeBrownian motions for
any two economies and f: p"f = E (V\4hV\4f) /t. It is obvious from (20) that in a pure diffusion
setting, the diffusion volatilityo as a risk measure and the market price of yiglannot be separately
identified from the stochastic discount factors. Under (20), the logmetithe exchange rate is:

hf

9= en d (o - (e P) s (Vo yiow). o

which implies that the currency return is normally distributed under the statistieaburer with
mean,ps = (1" —rf) + 1 ((yhcxh)2 — (yfof)2> and variancé/s = (y'a")? + (y'a")? — 2y"a"yanph'.

In this economy, the annualized expected return on the exchange %ateE$S/So) = Ms+ %Vs and
the currency risk premium is a constaRP = (y'a")? — y'a"y' o' p"f. The magnitude and sign of the
currency risk premium depends on both the market prices of risk (detedrbinrelative risk aversions)
of the two countries\’,y") and on the variance and covariance of the return shocks on thegatgre
wealth ", af,p""). Clearly, this prototype model is incapable of producing any curreetym non-
normalities. One possible direction to generate distribution non-normality is loypgarating levy
jumps in shocks to aggregate wealtis;” = exp(—r"t) exp(—y"a"W" — 2 (Y'a™)2t — Y13 — kyn[—Y"t).
However, under Bvy specification and constant market price of I’ISk and volatility, the risknfarm
and risk-neutral skewness are still constant. Our model in (4) with glabalcountry-specific risk
factors and stochastic risk premium rates appears desirable from bothtibal and empirical stand-
points.
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C. Option Pricing

Given theq "-dynamics of the log currency return in (18), we can derive its geneFpurier trans-
form as in Carr and Wu (2004b),

o = E? (e'uglf)
R (eiu(ohrf)w((ﬁ\/?f)waz(\/?hﬁf)znt)))
xEQ (eiu((wih/\ Jr‘];f“l/\ (%+k§[l])EhA‘)+(WEffmJiff/\t(%Hg[l])zf/\t)))

= M E S (W) BT (e WE) X (W R (22)

where (Y9 [u] WM U], g’ [u]) denote the characteristic exponents of the thréeyLcomponents prior
to time-change that are due to the global risk component, home countrifispisk component, and
foreign country-specific risk component, respectively:

2
Yo = %<\/§T‘\/«E7) (iu+u?),
WU = iu <%+ka [1]>+%u2—k§ [iu],
o' = <%+k3[—l]>+%u2—kj[—iu].

[9\[ 9 ah A f} denote three new measures defined by the following exponential martingales

2%, - exr)(iU((ﬂ—ff)an. (Ve - vE) ) +win.).
dd%ht = exp(iU(W;L,\ +3pR - (§+k§[1])zh/\t)+lph[u]§h/\t), (23)
%)t = exp(iu (W, —ip — Bk [-U)EN) + 0T [WEA).

To take the expectation, we need the dynamics for the risk premium ratesthedaespective new

measures:
v = <KV6V—K\7,‘[hVP>dt—|—(A)\, W, (24)
v = <KV9V vt)dt+oq, vidw', (25)
dz = (Kzez—x‘;‘égzt)duwz\/zdwé (26)
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with )
Ke' = Ky (1—iu) /Eaypv,
f .
Ko =Ky +iuy/Efwpy, (27)

K?Cg:Kz—F\/E.»h(k)zpz_iu (ﬁ—ﬁ) WzPz.

Since the three risk premium rates follow affine dynamics under their releveasuresy 9, A",
anda f, the expectations in (22) generate exponential-affine solutions:

@ = eiu(fh*ff)tENg(e*UJg[U]”t) A" (e—wh[u]z“/\t) Emf(efw‘[u}zfm)

_ eiu(rh_rf)te_bg(t)zo—cg(t)—bh(t)vg—ch(t)—bf(t)v(f,—cf(t)7 (28)

where (zo,vg,v(‘;) are the time-0 levels of the three risk premium rates and the coeffigefjsc(t)]
on each risk premium rate take the same functional forms:

2¢°(1-e )
be(t) = 2q°—(nC—KN°)(1—efr:h‘>’ (29)
colt) = &8 [2mn(1- 05 (1-e %) ) + (ne—kxep]

with n¢= \/(KNC)2 +202yc and forc =g, h, f, respectively. Given the generalized Fourier transform,
we can now follow Carr and Madan (1999) and use fast Fourier irorete obtain option prices.

D. Characteristic Function under Measure ®

For estimation, we also need to derive the log likelihood function for the woyreeturns. We first
derive the characteristic function of the log currency returns undestttistical measure and then
obtain the density of the currency return via fast Fourier inversion.

Given ther -dynamics for the currency return in (13), we derive its characterigtictfon as,

@ < o)
e ()

xE?® (eiu((\NEhh/\t+J§h/\t+(%+K][lDEhAl)(WEff/\t+J£f/\t+(%+K][1])Ef/\l)>>

= TN (Wi ) BT (e WM X (g WIE) (30)
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where (9[u],y" [u], " [u]) now denote the characteristic exponents of the thieeylcomponents
prior to time change under the statistical measure

W = —Jiu(E- +%< ) u?,
Wu = —IU( +ky [—1]) + Su2 ks [iu],
WU = iu(3+ko 1)+ 33U~k [-iu].

[9\[ 9 ach A f} denote three new measures defined by the following exponential martingales

% = exp(iu((ﬂ—\/_f)Wr?t+%ﬂt(5h—5f))"’wg[u]nt)’

t
G| = exp(iu (Wh, +J5h/\ + (3K [~1) 8N ) + WP g ) (31)

t
dé‘éTf exp(iu(—V\/;f/\t JEfA (3+ki[— ])Ef/\t)JrllJf[u]Ef/\t).

t

The dynamics for the three risk premium rates under the new measuresdyeco

dz = <Kzez_ K?‘H) dt + 0, /ZdW,
v — (Kvev - Kif"vp) dt + e, ARAW, (32)
dy = (KVGV— Kf,‘[fvtf) dt+ /v dw'’,

with
Kzf"’:KZ‘“(\/gﬁ_f )wzpz’ < = k- oy K =k iuvET@py.  (33)

Since the three risk premium rates follow affine dynamics under their releveasuresy 9, ah and
a(f, the expectations in (30) leads to the solution below:

& = gt (1)t ~Bolt—ca(t)-br(t)—n(t) b (0161 () (34)

Where(zo,vg,v(f)> are the time-0 levels of the three risk premium rates and the coeffi¢iRiits, c. (t)]
for c=h, f,g are given by the same equations as in (29), with appropriate changedigfithions of
(¢ andk™e,
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[ll. Data on Currency Straddles, Risk-Reversals, and Butterfly Speads

We obtain over-the-counter quotes on currency options and spamgemates for three currency pairs:
JPYUSD (the dollar price of one yen), GBPUSD (the dollar price of onendh and GBPJPY (the yen
price of one pound), over the sample period of November 7, 2001 t@da8, 2004. The data are
sampled weekly. Options quotes are available at seven fixed time-to-maturitiesveek, one, two,
three, six, nine, and 12 months. At each maturity, quotes are available éikéd moneyness. There
are a total of 12,285 option quotes.

The five options at each maturity are quoted in the following forms:

e Delta-neutral Straddle Implied Volatility (SIV) : A straddle is a sum of a call option and a put
option with the same strike. The SIV market quote corresponds to a nearathey implied
volatility that makesi& + AR = 0, whereAl = e~ *™N[d;] andAR = —e " "IN [—d4] are the Black-
Scholes delta of the call and put options in the straddNé] denotes the cumulative normal
function, andd; = W + %IV /T, with IV being the implied volatility inputr being
the option time-to-maturity, an being the strike price of the straddle. Since the delta-neutral

restriction impliesd; = 0, the implicit strike is close to the spot or the forward price.

e Ten-delta Risk-Reversal, RR[10], and 25-delta Risk-Reversal, RR5]: The RR[10] mea-
sures the difference in Black-Scholes implied volatility between a ten-deltafabe-money
call option and a ten-delta out-of-the-money put opti®R10] = IV °¢[10] — IV P[10]. RR[25]
is analogously defined on 25-delta call and put options. Option traderdgksreversal quotes
to quantify the asymmetry of the implied volatility curve, which reflects the skesvireshe
risk-neutral currency distribution.

e Ten-delta Butterfly Spread, BF[10], and 25-delta Butterfly Spead, BF[25} Butterfly spreads
are defined as the average difference between out-of-the-money impladities and the at-
the-money implied volatility:BF[10] = (IV¢[10] + IVP[10]) /2 — SIV andBF[25] = (IV¢[25] +
IV P[25]) /2 — SIV. Butterfly spread quotes capture the average curvature of the involiatility
curve, which reflects the kurtosis of the risk-neutral currency redigtnibution.

Based on the above definitions, we recover the underlying implied volatilitigg) d¥ (0) = SIV,
(i) V€25 = BF[25] + SIV + RR[25]/2, (i) IVP[25 = BF[25 + SIV — RR[25]/2, (iv) IV°[10] =
BF[10] + SIV + RR[10]/2, and (v)IV P[10] = BF[10] + SIV — RR[10]/2. For the purpose of estima-
tion, the volatility quotes are converted into out-of-the-money option priceghi$ calculation, the
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maturity-matched domestic and foreign interest rates are constructed Ug@dQRlLand swap rates
from Bloomberg.

Table | reports the mean, the standard deviation, and-#tatistics on the significance of the
sample mean for risk-reversal and butterfly spread series, all inrgages of the corresponding at-
the-money implied volatility (SIV). The-statistics adjust serial dependence according to Newey and
West (1987), with the number of lags optimally chosen according to And(@@8&1) based on an
AR(1) specification.

Average butterfly spreads are uniformly positive across all maturities, ingpiat out-of-the-
money option implied volatilities on average are significantly higher than the atxtimey implied
volatility. The lowestt-statistic is 10.98. Regardless of the currency pair, the butterfly spreztds
are strongly supportive of excess kurtosis in the risk-neutral retumditional distribution.

The sign and magnitudes of risk-reversals are informative about tinenasry of the conditional
return distribution. Consider JPYUSD where the sample averages of Kaeevisrsals are positive,
implying that out-of-money calls are generally more expensive than omotesiey puts. This evidence
suggests that, on average, the JPYUSD risk-neutral conditional didrifbution is right-skewed. The
average risk-reversals for GBPUSD are also positive, albeit to arldsgece. In contrast, the average
magnitudes of risk-reversals are negative for GBPJPY, implying thepcesof negative risk-neutral
return skewness.

Figure 1 plots the time-series of ten-delta risk-reversals in the left-panélseardelta butterfly
spreads in the right-panels, fixing maturity at one month (solid lines) and mwaéhs (dashed lines).
Over the sample period, there is significant variation in both risk-reveasalutterfly spreads, but
more so for risk-reversals. Indeed, the risk-reversals vary so thatlhe sign switches. The ten-delta
risk-reversals on JPYUSD have varied frer20 percent to over 50 percent of the at-the-money implied
volatility, the risk-reversals on GBPUSD have varied frerhi0 to 20 percent, and the risk-reversals on
GBPJPY have varied from 35 to over 15 percent. The evidence is broadly consistent with stochastic
skewness in the conditional currency return distributions.

[Figure 1 about here.]
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V. Joint Maximum Likelihood Estimation

We estimate the models using the time-series of both currency returns aedayuaption prices on
JPYUSD, GBPUSD, and GBPJPY. Since the risk premium rates are umabke we cast the mod-
els into a state-space form and infer the risk premium rates at each dageansefficient filtering

technique. Then, we estimate structural parameters by maximizing the joint likeldfaptions and

currency returns.

In the state-space form, we regard the risk premium rates in the threeneiesnas unobservable
states. For the general asymmetric models, wevuse[\y’SP v/PY vEBP 7] to denote thé4 x 1) state
vector. For the symmetric models, we drop the global risk premiumzrdtem the state vector since
it is no longer identifiable. We specify the state propagation equation usikglanapproximation of
the risk premium rates dynamics:

Vi =A+ DV 1 +/Gr&, wed* (35)
whereg; denotes an i.i.d. standard normal innovation vector and

® = exp(—KAt), K=< [Ky,Ky,Ky,Kz] >,

A = (I - q))e7 e = [eV7 eVa eVa eZ]Tv (36)

Gt <[(‘q2/ thle('qZ/ tfrv (*X%VthEzli O-EZt_ﬂAt%

where/At = 7/365 corresponds to the weekly frequency of the data(gndenotes a diagonal matrix
with the diagonal elements given by the vector inside the bracket.

Measurement equations are based on the observed out-of-moneymitEs) assuming additive,
normally-distributed measurement errors:

=0 Ww;0l+a, E(ag)=7, yecO0" (37)

wherey; denotes the 105 observed out-of-money option prices scaled by BtdmkeS vega at time
for the three currency pairs (across seven maturities and five morseyaegjories)o [v; ©] denotes
the corresponding model-implied values as a function of the parame®@ieset the state vectey. We
assume that the scaled pricing errors are i.i.d. normal with zero mean asigtovariance. Hence,
we can write the covariance matrix as—= o; |, with o, being a scalar antdbeing an identity matrix
of the relevant dimension of 105.
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The objective function (37) deserves some explanation. One may ctodsgne the pricing error
as the difference between the Black-Scholes implied volatility quote and its rropkéd fair value.
However, recall that our algorithm generates option prices from thenreharacteristic function. Con-
verting the option prices into Black-Scholes implied volatility involves an additiomaimization
routine that can be inefficient when embedded in the global optimization guoee By dividing the
out-of-the-money option prices by its Black-Scholes v8gd '*\/TN’[d;], we are essentially convert-
ing the option price into the implied volatility space via a linear approximation. Scajingttaccounts
for maturity effects while scaling by the normal probability density adjusts fefdkbt that out-of-the-
money options are cheaper than at-the-money options. For the estimatiorstweriivert the implied
volatility quotes into out-of-money option prices in percentages of the uridgrpot. Then, we ig-

nore the interest rate effect and apply time-homogeneous weighting ongptices at fixed delta\g)

1

and time-to-maturityw[As, 1] = 00N [N-Tag]

Let v, P, ¥,V denote the timdt — 1) ex ante forecasts of timevalues of the state vector, the
covariance of the state vector, the measurement series, and the covariahe measurement series,
respectively. Let; andP, denote the ex post update, or filtering, on the state vector and its covarianc
at the timet based on observationg ) at timet. In the case of linear measurement equations,

Vi =Hw+a, (38)

the Kalman-filter provides the most efficient updates. The ex ante predicren

Vi = A+0V_g,

Pi = ®R_10 +Gi1, (39)
v = HW,

Vi = HPRH"+17,

and the ex-post filtering updates are,

Vit = Vepr+ Keer (Ve — Ver)

Pi1 = Pr1— %1V Koo, (40)

wherex; 1 is the Kalman gain, given by,

Kir1=PrsaH’ (\7t+1)71~ (41)
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The iterative procedure defined by (39) and (40) yields a time-sertbg elk-ante forecasts and ex-post
updates on the mean and covariance of the state vectors and obseie®d se

In our application, the measurement equations are not linear in the state WAltaise the un-
scented Kalman filter to cope with this nonlinearity. The unscented Kalman fiksrauset of (sigma)
points to approximate the state distribution. If weketenote the number of states (four in the asym-
metric models and three in the symmetric models) an€l €0 denote a control parameter, we generate
a set of X+ 1 sigma vectorg; according to the following equations,

Xt,O - vta

i = %t/EK+QBR+6);, i=1..k i=1..2%

with the corresponding weightg given by,
wo = {/(k+0), wi=1/2k+Q)], i=1,...,2%k

These sigma vectors form a discrete distribution wittveing the corresponding probabilities. We can
verify that the mean, covariance, skewness, and kurtosis of this distrikarev;, P+ Gt, 0, andk +,
respectively. Thus, we can use the control parameteraccommodate conditional non-normalities in
the state propagation equation.

Given the sigma points, the prediction steps are given by:

th = A+¢Xt,i7
2k
Virr = WX i
+ i;) i Xt
. 2k .
Pi1 = %Wi Xei — e+ 1) (X — 1) (42)
i=

2k
Yeyr = i;)Wi O [Xt,i;@] )
. 2k .
Vipr = _Z)Wi (O[Xti:©] = Vis1) (O[Xei:©] —Vey1) +7,
=
and the filtering updates are given by

Virr = Vet Kera (Verr — Vi) s

|3t+1 = |3t+1_7(1+1\_/t+17<t117 (43)
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with
2k

A [i;Wi (Xt.,i —\_/t+1) (O [Xni;@] _Vt+1)T (vf+1) - (44)

We refer to Wan and van der Merwe (2001) for general treatments afitbeented Kalman filter.

Given the forecasted option pricgsand its conditional covariance matik obtained from the
filtering technique, we compute the log likelihood value for each week’sreatens on the option
prices assuming normally distributed forecasting errors,

1 — 1 _ _
|t+1[@]o =75 log ‘Vt‘ 5 ((Yt+1 —Yt+1)T (Vt+1) ! (Yer1— yt+1)) . (45)

Furthermore, given the extracted risk premium rates from the optionswlatepmpute the statistical
density for the weekly currency returns by applying fast Fourier gieerto the characteristic function
in (34). Letly1[®]° denote the weekly log likelihood of the currency return obtained from tlsis fa
Fourier inversion. We choose model parameters to maximize the log likelihottkalata series,
which is a summation of the weekly log likelihood values on both options andrayrreturns,

T-1
% (1t11[0]° +141[0]°) (46)

t=

©=argmax: [0, {y}L,). with £[O{y}{4]=

whereT = 117 denotes the number of weeks in our sample.

V. Empirical Results

Building on established themes, the models with proportional asymmetry andsgtriatetry are es-
timated using the maximum likelihood procedure in (46). For each specificdtan,models are
estimated that allow for different parameterizations of the dampened powgutap class in (6).
Specifically, we allow for unrestricted power coefficieat,and the nested special casesict —1,

o =0, anda = 1. Hence, altogether we estimate eight distinct models. The estimated modeépena
and their standard errors (in parenthesis), as well as the maximized logdikeéhalues, are reported
in Table II for the four symmetric models and in Table Il for the four asymmeirciels.
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A. The U.S., Japan, and UK Economies Are Asymmetric

The maximized likelihood values from the general asymmetric specificatiohke(lT§ are much larger
than the corresponding symmetric specifications (Table I1). Likelihood tatits for nested models
suggest that the differences are significant beyond any reasocatdidence level. The estimated
variance of the pricing errorsof) of the symmetric models is almost twice as large as that of the
asymmetric models. Therefore, by allowing asymmetry between the stochastiamtigactors of the
U.S., Japan, and the UK, the models capture the currency return aetcuoptions behavior much
better.

The scaling coefficient on the U.S. economy is normalized to ugity® = 1. Hence, the deviations
from unity for the estimates f®BP and &’PY measure the degree of asymmetry between the three
economies. The estimates for the scaling coefficient ond9R?, are only slightly larger than one, but
the estimates for the scaling coefficient on JagaR’, are significantly larger than unity at around 1.5.
This result suggests that the Japanese economy is significantly diffesenthe U.S. economy and
the UK economy. The average risk premium in Japan is about 50 perogert than that in the U.S. or
the UK. The larger risk premium can be due to either larger risk in the econolmigher risk aversion
for investors in Japan.

B. Risk Premium Rates on the Global Risk Factor Are More Persistnt and More Volatile

Given the observed asymmetry between the three economies, we can ideatifiobal risk factor
and its risk premium. The estimates of the parameters that control the globfatsk(k, 8,, oy, py)
are mostly statistically significant and are relatively stable across diff@amaimeterizations oa.
Comparing the estimates for the global risk factor parameters to those onuh&yespecific risk
factors in Table Ill, we observe that the global risk premium rate is botlemersistent and more
volatile than the country-specific risk premium rates. The mean-reversimmeter estimates for
the global risk factork,, is not distinguishable from zero, implying near non-stationary behatrior.
contrast, the estimates of mean-reversion for the country-specific,fagtoainge from 3.053 to 5.204,
implying a relatively short half life of two to three months. These estimates stijgs the variations
in the country-specific risk premium rates are much more transitory thartivagan the risk premium
rate of the global risk factor.
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Furthermore, the volatility coefficient estimats for the global risk premium factor are around
0.8, about five times larger than the corresponding volatility coefficiepter the country-specific risk
premium rates, which are between 0.14 to 0.18.

Our findings are consistent with Engle, Ito, and Lin (1990), who userihigies of meteor show-
ers versus heat waves to describe global versus country-spdwitikss respectively. Using intra-day
exchange rate data, they find that volatility clustering in exchange rates isyndaiven by global
shocks. Using weekly data on currency returns and currency optiendocument that the risk pre-
mium rates on the global risk factor are both more persistent and more volatiléhté risk premium
rates on the country-specific risk factors. Our findings also suggasit more permanent variations
of the state-price deflator are mainly driven by a global risk componentatindg a high degree of in-
ternational integration among the three economies. In this sense our evmletite role of the global
risk factor agrees with Brandt, Cochrane, and Santa-Clara (200w) r@ason that the log stochastic
discount factors must be highly correlated to explain the relative smoatlofdise exchange rates.

C. Risk Premium Increases When the Wealth DeclineRelative to the Global Portfolio

The correlation parametey, captures how the risk premium rate changes with the global shocks while
the correlation parameter, measures how the risk premium rate changes with the country-specific
shocks. The estimates fpy are strongly negative between -0.702 and -0.999, depending orediffer

o specifications. A negative correlation implies that the risk premium increalses the economy
receives a negative country-specific shock. Such a risk premiuraagsercan come from either or
both of the two sources: (1) A negative shock is associated with higleoety-wide volatility. (2)
Investors become significantly more risk averse after a negative shdadeaand higher compensation
for the same amount of risk.

Our empirical estimates for the correlation between the risk premium rate agtbtia risk factor
p; are positive and range between 0.52 to 0.65. Thus, investors respitadiidferently to the global
risk component and the country-specific risk component. Although imsegiemand a higher risk
premium in the presence of a negative country-specific shock to themgothey actually ask for a
lower risk premium if the origin of the negative shock is global.

A possible interpretation for the different responses is that the risk preimian economy changes
with the relative wealth of the economy with the global portfolio serving as a benchmark.stokse
demand a higher premium only when the wealth of the economy declines rédetieeglobal portfolio.
Thus, when the global risk factor receives a negative shock, thmegpwealth decreases in absolute
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terms, but increases relative to the global portfolio, and hence the eskipm declines. In contrast,
a negative shock to the country-specific risk factor decreases themgavealth in both absolute and
relative terms, and the risk premium in this economy increases unambiguously.

When studying how an economy responds to external shocks, it is impootatinguish the
different possible sources of the shocks. An analysis that fails tamisate between country-specific
and global shocks can lead to misleading conclusions. It is worthwhile to metitia the extant
literature often studies the behavior of stochastic discount factors ambegy-wide risk premium
using equity index returns and equity index options. Since the stochastaudisfactors estimated
from these data are projections of the pricing kernel on the equity indexsofgle economy, these
studies do not typically distinguish between global shocks versus cesipéwific shocks. Our joint
analysis based on a triangular pair of currency returns and curggnions reveals the complex multi-
dimensional feature of the stochastic discount factors in internationabetes and highlights the
inadequacy of one-dimensional projections.

D. Jumps Arrive Frequently, But Only Downside Jumps Are Priced

Our model for the stochastic discount factors incorporates a jump compadne arrival rate of which
follows an exponentially dampened power law. Under this specification,awerpcoefficientn con-
trols the jump type. The model generates finite-activity jumps wienO, under which jumps arrive
only a finite number of times within any finite interval and hence can be redasieare events. On
the other hand, whem > 0, jumps arrive an infinite number of times within any finite interval and can
therefore be used to capture more frequent movements.

When we estimate the general asymmetric model wits a free parameter, the estimatedads
0.227. Nevertheless, the estimate has large standard error, suggegtintigbidentification problems.
Thus, within the general specification, we also estimate three speciahggisesfixed at—1, 0, and 1.
As shown in Table Il for the asymmetric model, the model wiitl 1 generates the highest likelihood
value among the three special cases, indicating that jumps in the three ecooeni®t rare events,
but rather arrive frequently.

The relative asymmetry of jumps are controlled by the two exponential dampeogificient3
andB_. A larger dampening coefficielft, implies a smaller arrival rate for positive jumps and vice
versa. Table 1l shows that the estimatesfiorare substantially larger than those for, more so when
a is larger and hence when more frequent jumps are allowed. The large testifoi3 ;. suggest that
we rarely observe positive jumps in the stochastic discount factorscintifee standard errors @,
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are also very larger, suggesting that positive jumps are so rare tharmetcaccurately identify the
parameter that control the positive jumps. Therefore, we can safelyness one-sided jump structure
for the log stochastic discount factor by setting the arrival rate of pegitimps to zerov[x] = O for
x> 0.

To pursue this angle, Table IV reports the parameter estimates and maximiti&dlibgod values
under this one-sided jump assumption. The estimates for most of the paraareteisse to those
reported in Table Il under the two-sided jump parameterization. The likalilvatues are also about
the same. The only difference is that with the one-sided jump assumption in [Valilee standard
errors of some parameters decline, showing better identification with the mimienious one-sided
specification. Therefore, our results support the lack of a signifipacing component for positive
jumps in the stochastic discount factors.

In reality, the wealth of an economy can both jump up and jump down, with the distribrel-
atively symmetric. The fact that we can only detect a downside jump compaméime stochastic
discount factor implies that investors are only concerned with downsidesjumihe economy while
ignoring upside jumps for pricing. In other words, only downside jumpsareeived as risk and are
priced.

The presence of priced frequent downside jumps in the stochastic difactors provides theoret-
ical justification for the prevailing evidence from equity index option mark&though the statistical
return distribution for equity indexes is relatively symmetric, the risk-neutisitibutions computed
from option prices are highly negatively skewed (Jackwerth and Ri#dm&l996), and Bakshi, Kapa-
dia, and Madan (2003)). Carr and Wu (2003) show that a one-sigstdble law, without exponential
dampening, captures the S&P 500 index options price behavior well. Wipdyirgpmeasure changes
using exponential martingales;stable laws are converted into exponentially dampened power laws.
Hence, the dampened power law specification subsumes slteble specification.

VI. Conclusions

In this paper, we propose to infer the dynamic behaviors of the stochastioutt factors in inter-

national economies from currency returns and currency options. rétedivelop a class of models
of stochastic discount factors that are sufficiently flexible to capture ltiserged behaviors of cur-
rency returns and currency options, especially stochastic risk premiudnstachastic skewness. We
then estimate these models using time-series of currency returns and optemagr three currencies
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that form a triangular relation: the dollar price of yen, the dollar price afifalp and the yen price of
pound. Based on the estimation results, we investigate whether investara ghifferential response
to country-specific risks versus global risks, and to upside-jump sefswnside-jump risks. We also
investigate how risk premium reacts to shocks emanating from differentesu

Our estimation results show that the average risk premium in Japan is abpeitca®t larger than
the average risk premium in the U.S. or UK. The asymmetry between the thwaerees enables
us to identify both the global risk factor and the country-specific risk facnd their associated risk
premium dynamics. We find that the risk premium rate on the global risk fadbatlismore persistent
and more volatile than the risk premium rates on the country-specific risktheronore, investors react
differently to shocks to the global risk factor and the country-specificfastors. Investors demand a
higher risk premium when the economy receives a negative shock tlainsrg-specific, but demand
a lower premium when the negative shock is global. Hence, the risk premiamdnonomy increases
only when the wealth of the economy declines relative to the global portfoli@lliz, our estimation
shows that jumps in each economy are not rare events, but arrivéregoently. However, investors
only price downside jumps while upside jumps are not perceived as risk.

Traditional literature has studied the behavior of stochastic discountgagitber through point es-
timates on various types of expectation hypotheses regressions, ormoendy, through one-dimensional
projections to equity indexes. Our study shows that the stochastic disfamtots in international
economies show complex multi-dimensional dynamic behaviors that canrsiblydse fully disentan-
gled through point estimates or one-dimensional projections. Futurachseadls for a joint analysis
of the international bond, equity, and currency markets and their optionist&in a finer distinction
between the dynamics of risk and pricing.
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Table |

Risk-Reversals and Butterfly Spreads

Each maturity has four set of volatility quotes in the form of ten-delta riskensal (denoted RR[10]),
25-delta risk-reversal (denoted RR[25]), ten-delta butterfly spfeéanioted BF[10]), and 25-delta but-
terfly spread (denoted BF[25]), all as percentages of the comegmpat-the-money implied volatility
(SIV). Each row represents a single maturity. The first column denotesptien maturity, with ‘w’
denoting weeks and ‘m’ denoting months. Reported are the mean, the staledéation, and thé
statistics on the significance of the sample mean for each risk-reversblitiadly spread series. The
t-statistics adjust serial dependence according to Newey and We3) (1@t the number of lags op-
timally chosen according to Andrews (1991) based on an AR(1) spemficeData are weekly from
November 7, 2001 to January 28, 2004.

Mat. RR[10] RR[25] BF[10] BF[25]
JPYUSD
1w 11.63 13.81 3.34 645 759 3.35 1365 3.84 11.77 3.40 0.74 1550
im 1253 13.64 320 6.94 756 3.20 13.90 3.40 12.75 3.57 0.62 18.42
2m 13.91 1489 285 755 8.08 2.83 1449 293 1481 3.70 053 21.80
3m 14.47 1578 259 7.86 8.61 258 1491 256 17.18 3.79 0.47 25.42
6m 15.30 17.98 221 823 974 220 1543 220 19.71 4.02 0.38 31.52
9m 15.79 19.41 208 845 10.36 2.08 16.23 2.04 21.75 4.13 0.40 29.23
12m 16.19 20.47 2.00 863 1094 2.00 1655 2.03 21.78 4.18 043 27.25
GBPUSD
1w 586 807 293 326 442 298 974 265 1111 2.82 0.59 15.90
im 573 7.08 279 321 393 286 9.79 239 1098 2.83 0.55 14.79
2m 551 632 281 319 360 294 955 212 1156 2.76 0.48 1591
3m 530 581 279 301 325 290 964 168 1546 271 0.42 17.74
6m 487 540 225 275 297 232 953 115 2583 247 046 13.75
9m 4.80 527 216 272 291 219 949 0.99 29.88 246 0.42 13.89
12m 4.68 530 201 267 2.89 209 937 091 32.86 242 041 1514
GBPJPY
1w -5.85 12.08 -1.73 -3.18 6.58 -1.72 11.09 256 17.06 2.95 0.80 14.38
im -6.42 1232 -1.70 -351 6.69 -1.71 1151 2.16 20.36 3.17 0.48 26.87
2m -6.32 1248 -1.62 -3.41 668 -1.62 12.02 2.12 1955 3.31 0.45 28.28
3m -6.02 1257 -152 -328 6.74 -154 12.44 213 1819 3.44 0.43 28.59
6m -5.76 12.62 -1.43 -3.12 6.80 -1.43 13.07 2.00 1826 3.54 0.49 21.35
9m -5.72 12.75 -1.40 -3.08 6.86 -1.39 13.47 2.16 1651 3.65 0.60 16.67
12m -5.70 13.01 -1.35 -3.06 6.98 -1.35 13.64 2.11 16.83 3.69 0.63 15.74
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Table 11
Maximum Likelihood Estimates of Model Parameters under Strict Symmetry

Entries report the maximum likelihood estimates of the structural parametetbeindtandard errors
(in parentheses) for the models admitting stochastic currency risk premidratachastic skewness
under strict symmetry. Four separate models are estimated that respedtosglthe power coefficient,
a, in the dampened power law specification for the jump component to take \ailaes —1,a =0,

a = 1, anda unrestricted. Estimation is based on weekly currency return and cyrogtions data
from November 7, 2001 to January 28, 2004 (117 weekly observdioreach series). The last row
reports the maximized log likelihood value? represents the variance of the measurement error.

C] a=-1 a=20 a=1 Freea

o2 0336 (0.004) 0.334 (0.004) 0.329 (0.004)  0.324 (0.005)
Ky 2.149 (0.108) 1.912 (0.096) 1.531 (0.053) 1.210 (0.081)
6y 0.003 (0.000) 0.003 (0.000) 0.004 (0.000)  0.001 (0.014)
@,  0.149 (0.010) 0.150 (0.009) 0.148 (0.008)  0.081 (0.486)
p, 0252 (0.054)  -0.321 (0.048)  -0.412 (0.046) -0.898 (5.433)
A 17.684 (1.589) 5.255 (0.500) 1.184 (0.392)  0.747 (9.170)

B. 4623 (0.117) 4.146 (0.078) 3.835 (1.032)  4.420 (4.146)
B, 43513 (6.9e2) 58234 (4.4e2)  97.645 (3.7€2) 3.1e4 (4.5e6)
o -1 — 0 — 1 — 1810 (0.403)
/T 1.62 1.58 1.67 1.93
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Table Il
Maximum Likelihood Estimates of Model Parameters under Proportional Asymmetry

Entries report the maximum likelihood estimates of the structural parametetBeindtandard errors

(in parentheses) for the models admitting stochastic currency risk premidratachastic skewness
under proportional asymmetry. Four separate models are estimated {rexttiesdy allow the power
coefficient,a, in the dampened power law specification for the jump component to take vaflues
a=-1,a=0,0 =1, anda unrestricted. Estimation is based on weekly currency return and cyrrenc
options data from November 7, 2001 to January 28, 2004. The laseqmovts the maximized average
daily log likelihood value o? represents the variance of the measurement error.

(C] a=-1 a=0 a=1 Freea

o? 0.174 (0.002) 0.175 (0.002) 0.167 (0.003) 0.167 (0.002)
&PY 1507 (0.027) 1.508 (0.028) 1.531 (0.035) 1531 (0.034)
§CBP 1,017 (0.005) 1.016 (0.006) 1.007  (0.006) 1.007 (0.005)
Kz 0.000 (0.006) 0.000 (0.006) 0.000 (0.006) 0.000 (0.005)
0, 0.230 (0.069) 0.231 (0.065) 0.356 (0.220) 0.357 (0.223)
w; 0.807 (0.069) 0.797 (0.069) 0.815 (0.053) 0.813 (0.050)
Pz 0.650 (0.059) 0.626 (0.059) 0.521 (0.034) 0.524 (0.035)
Ky 5.204 (0.190) 4921 (0.210) 3.061 (0.059) 3.053 (0.061)
0By 0.003 (0.000) 0.003 (0.000) 0.003 (0.006) 0.003 (0.001)
Wy 0.183 (0.006) 0.174 (0.006) 0.137 (0.163) 0.138 (0.016)
Pv -0.702 (0.046) -0.713 (0.048) -0.996  (1.185) -0.999 (0.115)
A 18.698 (9.146) 5.659 (1.428) 20.489 (54.032) 815.387 (7.8e3)
B 5.132 (0.936) 4523 (0.686) 36.767 (9.842) 63.069 (59.324)
By 1.2e2 (4.3e4) 1.4e2 (7.8e3) 2.5e3  (6.9e5) 4.7e4 (6.9e4)
a -1 — 0 — 1 — 0.227 (2.205)
)T 32.97 32.84 33.96 34.10
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Table IV
Maximum Likelihood Estimates of Model Parameters Assuming One-Side Jumps

Entries report the maximum likelihood estimates of the structural parametetbeindtandard errors
(in parentheses) for the models admitting stochastic currency risk premidratachastic skewness
under proportional asymmetry and assuming only negative jumps. Foanasepodels are estimated
that respectively allow the power coefficient,in the dampened power law specification for the jump
component to take values af= —1,a = 0, a = 1, anda unrestricted. Estimation is based on weekly
currency return and currency options data from November 7, 20Ghteady 28, 2004. The last row re-
ports the maximized average daily log likelihood valag represents the variance of the measurement
error.

C] a=-1 a=0 a=1 Freea

02 0.174 (0.002) 0.175 (0.002) 0.167 (0.003) 0.167 (0.002)
§PY 1507 (0.026) 1.509 (0.027) 1.531 (0.034) 1.530 (0.034)
§GBP 1017 (0.005) 1.016 (0.006) 1.007 (0.005) 1.008  (0.005)
Kz 0.000 (0.005) 0.000 (0.005) 0.000 (0.006) 0.000 (0.006)
0, 0.230 (0.066) 0.231 (0.060) 0.357 (0.196) 0.348 (0.289)
w,  0.807 (0.069) 0.797 (0.068) 0.814 (0.051) 0.805 (0.051)
0s 0.650 (0.058) 0.626 (0.058) 0.521 (0.034) 0.529 (0.035)
Ky 5.203 (0.185)  4.924 (0.200) 3.053 (0.046) 3.034 (0.065)
oy 0.003 (0.000) 0.003 (0.000) 0.003  (0.000) 0.003 (0.001)
w,  0.183 (0.006) 0.174 (0.006) 0.137 (0.011) 0.138 (0.018)
pp  -0.702 (0.042)  -0.713 (0.045)  -0.996 (0.094)  -0.999 (0.129)
A 18.698 (9.137) 5.658 (1.408)  21.199 (10.585) 8.8e2 (9.4e3)

B. 5132 (0.935) 4526 (0.690) 37.329 (9.718)  66.157 (70.052)
o 1 — 0 — 1 — 0.240 (2.428)
/T 32.97 32.84 33.96 34.10
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Figure 1. Time-Variation in Risk-Reversals and Butterfly Spreads:Left panels plot the time-series
of ten-delta risk-reversals and the right panels plot the time-series ditémbutterfly spreads, both as
a percentage of at-the-money implied volatility. The two lines correspond todisiion maturities
of one month (solid line) and three months (dashed line). Data are weektyNmwvember 7, 2001 to
January 28, 2004.
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